Synthesis and Structure of trans-Bis[2(3H)-benzimidazolethione]bis(thiourea)tellurium(II) Chloride, $\left[\mathrm{Te}\left(\mathrm{CH}_{4} \mathbf{N}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right] \mathrm{Cl}_{2}$

By G. C. Rout and M. Seshasayee*
Department of Physics, Indian Institute of Technology, Madras-600 036, India
and G. Aravamudan and S. Sowrirajan
Department of Chemistry, Indian Institute of Technology, Madras-600 036, India

(Received 15 September 1983; accepted 13 February 1984)

Abstract

M_{r}=651 \cdot 15\), monoclinic, $P 2_{1} / c, \quad a=$ 6.623 (1), $\quad b=11.387$ (3),$\quad c=16.085$ (3) $\AA, \quad \beta=$ $93.90(2)^{\circ}, V=1210 \AA^{3}, D_{x}=1.787 \mathrm{Mg} \mathrm{m}^{-3}, Z=2$, $F(000)=643.99, \mu($ Mo $K \alpha)=1.808 \mathrm{~mm}^{-1}, \lambda($ Mo $K \alpha)$ $=0.7107 \AA, T=293 \mathrm{~K}$, final $R=0.029$ and $R_{w}=$ 0.027 for 2068 reflections. The Te atom, lying at the crystallographic centre of symmetry, is bonded to two thiourea S atoms and two $2(3 \mathrm{H})$-benzimidazolethione S atoms in a trans-square-planar arrangement. The TeS_{4} group has the dimensions $\mathrm{Te}-\mathrm{S}(1)=2.694$ (2), $\mathrm{Te}-$ $\mathrm{S}(2)=2.685(1) \AA$, and $\mathrm{S}(1)-\mathrm{Te}-\mathrm{S}(2)=89.4(1)^{\circ}$.

Introduction. $\mathrm{Te}^{\text {II }}$ is a typical soft acid and a large number of complexes of $\mathrm{Te}^{\mathrm{II}}$ with S ligands have been reported (Foss, 1970). Of the S ligands, the most extensively studied unidentate types are thiourea and its derivatives. Particularly interesting are the squareplanar complexes $\mathrm{Te} L_{4} X_{2}$ [L : thiourea group; X : halides (Elder, Marcuso \& Boolchand, 1977; Barnard, Donaldson, Grimsey, Dennes, Russo \& Calogero, 1981; Anderson, 1971; Fosheim, Foss, Scheie \& Solheimsnes, 1965; Ault \& Husebye, 1978)] and $\mathrm{Te} L_{2} L_{2}^{\prime}$, the latter being a mixed-ligand complex of $\mathrm{Te}^{\mathrm{II}}$ containing thiourea and thiosulphonate groups (Foss, Maroy \& Husebye, 1965; Ase, Moe \& Solheim, 1971; Ase, 1969; Foss, Lyssandtrae, Moe \& Tysseland, 1973; Ase \& Roti, 1974). The condensation product of o-phenylenediamine with carbon disulphide can have two extreme tautomeric forms, namely $2(3 H)$ benzimidazolethione (also known as phenylenethiourea) (ptu) (I) and (III), and 2-benzimidazolethiol (II). Generally, this compound is referred to as (II) in the literature, though photoelectron spectroscopy (Takahashi \& Yabe, 1969), X-ray crystal structure (Form, Raper \& Downie, 1976) and solution studies indicate that the compound is present mostly as (I). It was considered interesting to find the mode of ligation of the compound towards $\mathrm{Te}^{\mathrm{II}}$. In this paper the synthesis and structure of the title compound, an interesting mixed-ligand complex, are reported. The

[^0]
(I)

(III)
structure of a $\mathrm{Te}^{\mathrm{IV}}$ complex with the $2(3 H)$ benzimidazolethione ligand has been reported (Deuten, Schnabel \& Klar, 1979).

Experimental. Preparative method. Single crystals grown as follows: $0.05 \mathrm{~g}(\sim 0.1 \mathrm{~m} M)$ of tetrakis(thiourea)tellurium(II) chloride (Fosheim, Foss, Scheie \& Solheimsnes, 1965) were dissolved in 10 ml of methanol containing $0.5 \mathrm{~g}(\sim 6 \mathrm{~m} M)$ thiourea; 5 ml of concentrated HCl added followed by 0.10 g ($\sim 0.5 \mathrm{mM}$) of $2(3 \mathrm{H})$-benzimidazolethione dissolved in 5 ml methanol; mixture then diluted with another 10 ml methanol and kept aside for slow evaporation of the methanol; over 6 to 12 h transparent orange red crystals of the complex separated out; crystals first washed five times with $1 M \mathrm{HCl}$ and then twice with a 0.02 M solution of $2(3 \mathrm{H})$-benzimidazolethione in acetone and vacuura dried.
D_{m} not determined. Single crystal ca $0.20 \times 0.30 \times$ 0.35 mm . Unit-cell parameters by least-squares refinement of setting angles of 22 centred high-angle reflections. Nonius CAD-4 diffractometer, graphitemonochromated Mo $K \alpha$ radiation. Intensities of all reflections ($h: 0 \rightarrow 8, k: 0 \rightarrow 15, l:-21 \rightarrow 21$) with $2<$ $\theta<28^{\circ}$ measured at room temperature. $\omega-2 \theta$ scan mode, scan angle $\Delta \omega=(0.80+0.35 \tan \theta)^{\circ}$. Two standard reflections ($\overline{1} 64, \overline{1} 60$) monitored every hour:
© 1984 International Union of Crystallography

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters ($\AA^{2} \times 10^{3}$); $U_{e q}=\left(U_{11}+U_{22}+U_{33}\right) / 3$

	x	y	z	$U_{\text {eq }}$
Te	0	0	0	26 (1)
S(1)	631 (3)	-247 (1)	1663 (1)	45 (2)
C(1)	-1212 (9)	719 (5)	1959 (3)	35 (5)
N(1)	-690 (8)	1749 (5)	2297 (3)	49 (4)
N(2)	-3138(8)	446 (5)	1871 (3)	46 (5)
S(2)	3552 (2)	1130 (1)	-28(1)	34 (1)
C(2)	2948 (7)	2585 (4)	-41(3)	25 (4)
N(3)	2775 (6)	3280 (4)	620 (2)	27 (4)
N(4)	2754 (6)	3270 (4)	-724 (2)	27 (4)
C(3)	2579 (7)	4446 (4)	362 (3)	25 (4)
C(4)	2553 (7)	4440 (5)	-500 (3)	27 (4)
C(5)	2429 (9)	5489 (5)	-953 (4)	38 (5)
C(6)	2304 (9)	6505 (5)	-503 (4)	41 (6)
C(7)	2301 (8)	6521 (5)	367 (4)	38 (5)
C(8)	2449 (9)	5483 (5)	805 (4)	37 (5)
Cl	4215 (2)	2620 (1)	2518 (1)	40 (1)

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

	$2.694(2)$	$\mathrm{Te}-\mathrm{S}(2)$	$2.685(1)$
$\mathrm{Te}-\mathrm{S}(1)$	$\mathrm{S}(1)-\mathrm{C}(1)$	$1.734(6)$	
$\mathrm{S}(2)-\mathrm{C}(2)$	$1.704(5)$	$\mathrm{C}(1)-\mathrm{N}(2)$	$1.311(8)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.329(8)$	$\mathrm{C}(2)-\mathrm{N}(4)$	$1.346(6)$
$\mathrm{C}(2)-\mathrm{N}(3)$	$1.337(6)$	$\mathrm{N}(4)-\mathrm{C}(4)$	$1.389(7)$
$\mathrm{N}(3)-\mathrm{C}(3)$	$1.395(6)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.399(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.386(7)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.400(9)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.370(8)$	$\mathrm{C}(8)-\mathrm{C}(3)$	$1.385(8)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.376(8)$	$89.4(1)$	
	$\mathrm{S}(1)-\mathrm{Te}-\mathrm{S}(2)$		
$\mathrm{Te}-\mathrm{S}(1)-\mathrm{C}(1)$	$98.2(2)$	$\mathrm{Te}-\mathrm{S}(2)-\mathrm{C}(2)$	$105.1(2)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$120.3(4)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$121.2(4)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$118.5(4)$	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(3)$	$126.8(3)$
$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(4)$	$125.6(3)$	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{N}(4)$	$107.3(3)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(3)$	$109.8(3)$	$\mathrm{C}(2)-\mathrm{N}(4)-\mathrm{C}(4)$	$110.5(3)$
$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	$106.7(3)$	$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(8)$	$131.8(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(4)$	$105.6(3)$	$\mathrm{N}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$133.4(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.9(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$116.7(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$122.9(5)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.7(4)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$118.3(4)$	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.5(4)$

no significant variation in intensity. Of 3389 reflections collected, 2068 reflections with $I>3 \sigma(I)$ considered as observed. No absorption correction. $R_{\text {int }}=0.01$. Te atom positioned at the centre of symmetry ($0,0,0$). Fourier maps revealed the positions of the other nonhydrogen atoms. Isotropic refinement reduced R to 0.071 showing very little anisotropic motion of the atoms in the molecule. Refinement by full-matrix least squares on F with anisotropic thermal parameters for the nonhydrogen atoms. All H atoms (from $\Delta \rho$ map) refined isotropically. Refinement converged to final $R=0.029$ and $R_{w}=0.027$ for 2068 reflections; $w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.003 F_{o}^{2}\right]$ in the final stages. $(\Delta / \sigma)_{\max }$ $=0.5$. 182 parameters refined. Final $\Delta \rho$ map shows max. and min. heights of 0.94 and $-0.88 \mathrm{e} \AA^{-3}$ and is featureless. All calculations carried out using SHELX 76 (Sheldrick, 1976). Atomic scattering factors for nonhydrogen atoms from Cromer \& Mann (1968), for H atoms from Stewart, Davidson \& Simpson (1965). Anomalous-dispersion correction factors for nonhydrogen atoms from Cromer \& Liberman (1970).

Discussion. Fractional coordinates, bond lengths and bond angles are given in Tables 1 and 2.*

Fig. 1 depicts the molecular configuration drawn by ORTEP (Johnson, 1965). The mixed-ligand complex consists of a $\left[\mathrm{Te}(\mathrm{ptu})_{2}(\mathrm{tu})_{2}\right]^{2+}$ cation and Cl^{-}anions. The Te^{2+} has an S_{4} ligand coordination which is very nearly square-planar. The two $2(3 H)$-benzimidazolethione ligands are trans to each other and similarly the two thioureas. The $\mathrm{Te}-\mathrm{S}$ bond lengths are nearly symmetric with $\mathrm{Te}-\mathrm{S}(\mathrm{tu})=2.694$ (2) and $\mathrm{Te}-\mathrm{S}(\mathrm{ptu})$ $=2.685(1) \AA$ and an intraligand angle of $89.4(1)^{\circ}$. Although the average $\mathrm{Te}-\mathrm{S}$ bond length of 2.689 (9) \AA is considerably longer than $2.36 \AA$ (Alcock, 1972), the sum of the covalent single-bond radii of Te and S , it is typical for such bonds found in numerous Te^{11} complexes (Ault \& Husebye, 1978) with monodentate S ligands. Following the notation given by Elder, Marcuso \& Boolchand (1977) the cation has the ++-conformation. The planar ligand molecules are arranged in such a manner that one pair, namely tu and ptu, lies above the other pair below the TeS_{4} plane providing an inversion symmetry in the entire molecular fragment. This is the most common conformation found in similar compounds (Anderson, 1971; Fosheim, Foss, Scheie \& Solheimsnes, 1965; Ault \& Husebye, 1978; Foss, Maroy \& Husebye, 1965; Ase, Moe \& Solheim, 1971; Ase, 1969; Foss, Lyssandtrae, Moe \& Tysseland, 1973; Ase \& Roti, 1974), with the sole exception of $\mathrm{Te}(\mathrm{etu})_{4} \mathrm{Cl}_{2}$ (Elder, Marcuso \& Boolchand, 1977).

In most Te^{11} complexes containing unidentate S ligands the TeS_{4} chromophore shows inequivalence in bond lengths. These distortions could arise for two reasons: (a) the close proximity of counter ions with respect to the two lone pairs of electrons on $\mathrm{Te}^{\mathrm{II}}$, and (b) the close proximity of counter ions to the S ligands themselves. Data on (b) have been deposited.
In the ptu ligand in the present structure, the $\mathrm{S}(2)-\mathrm{C}(2)$ bond length of 1.704 (5) \AA corresponds to a

[^1]

Fig. 1. ORTEP plot of the molecule, with 50% probability thermal ellipsoids.
partial double bond of 1.671 (8) \AA observed in the free ligand (Form, Raper \& Downie, 1976), but is much shorter than the $1.79 \AA$ quoted in cis-bis $[2(3 H)$ benzimidazolethione Itetrachlorotellurium(IV)-dioxane (Deuten, Schnabel \& Klar, 1979). This S-C bond length also agrees with those obtained for similar compounds referred to in Introduction. The C(2)-N(3) and $\mathrm{C}(2)-\mathrm{N}(4)$ bond lengths $[1.337(6)$ and $1 \cdot 346$ (6) \AA] do not show significant variation in keeping with the thione structure and agree with the value $[1.362(6) \AA]$ quoted in the free ptu crystal structure and with the 1.353 (14) and 1.317 (13) \AA in the $2(3 \mathrm{H})$-benzimidazolethione- $\mathrm{Te}^{\mathrm{IV}}$ complex (Deuten, Schnabel \& Klar, 1979). Hence the bond parameters obtained for our compound clearly indicate the presence of thione form (III). $\mathrm{C}-\mathrm{C}$ bond lengths are in the range 1.370 (8) to 1.400 (9) \AA and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are in the range $116.7(4)$ to $122.9(5)^{\circ}$. The average $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ bond lengths in the ptu ligand are 0.84 (5) and 0.88 (6) \AA respectively. The ptu group is planar within a maximum deviation of 0.041 (4) \AA from the least-squares plane.

The thiourea SCN_{2} moiety is planar with the maximum deviation from the least-squares plane through the atoms being 0.028 (5) \AA. The $S-C$ bond length $[1.734(6) \AA$] and $\mathrm{C}-\mathrm{N}$ partial double bonds [1.329 (8) and 1.311 (8) \AA] are normal for thiourea ligands. The average $\mathrm{N}-\mathrm{H}$ bond is 0.87 (2) \AA.

The Cl^{-}ions remain outside the coordination sphere of the Te atom, $\mathrm{Te}-\mathrm{Cl}$ being 5.618 (2) \AA. However, the Cl^{-}ion remains approximately in the least-squares plane of the SCN_{2} thiourea and ptu groups, the deviation of the ion from these two planes being 0.014 (1) and 0.855 (1) \AA respectively. Two N atoms of the thiourea group are involved in hydrogen bonding with the Cl^{-}ion, as revealed by the distances 3.292 (6) and 3.453 (6) \AA. Furthermore, the same Cl^{-}ion
participates in hydrogen bonding with the NH group of the ptu ligand also, with distances of 3.225 (4) and 3.214 (4) \AA. There is a short intermolecular S \cdots S van der Waals interaction $[\mathrm{S}(2) \cdots \mathrm{S}(2)(1-x,-y,-z)$ $=3 \cdot 207(2) \AA]$.

References

Alcock, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1-53. Anderson, O. P. (1971). Acta Chem. Scand. 25, 3593-3608.
Ase, K. (1969). Acta Chem. Scand. 23, 3206-3216.
Ase, K., Moe, K. M. \& Solheim, J. O. (1971). Acta Chem. Scand. 25, 2467-2475.
Ase, K. \& Roti, I. (1974). Acta Chem. Scand. Ser. A, 28, 104-112.
Ault, H. K. \& Husebye, S. (1978). Acta Chem. Scand. Ser. A, 32, 157-162.
Barnard, P. W. C., Donaldson, J. W., Grimsey, R. M. A., Dennes, G., Russo, U. \& Calogero, S. (1981). Inorg. Chim. Acta, 51, 217-223.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Deuten, K. V., Schnabel, W. \& Klar, G. (1979). Cryst. Struct. Commun. 8, 679-684.
Elder, R. C., Marcuso, T. \& Boolchand, P. (1977). Inorg. Chem. 16, 2700-2704.
Form, G. R., Raper, E. S. \& Downie, T. C. (1976). Acta Cryst. B32, 345-348.
Fosheim, K., Foss, O., Scheie, A. \& Solheimsnes, S. (1965). Acta Chem. Scand. 19, 2336-2348.
Foss, O. (1970). Pure Appl. Chem. 24, 31-48.
Foss, O., Lyssandtrae, N., Moe, K. M. \& Tysseland, M. (1973). Acta Chem. Scand. 27, 218-228.

Foss, O., Maroy, K. \& Husebye, S. (1965). Acta Chem. Scand. 19, 2361-2368.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Takahashi, Y. \& Yabe, K. (1969). Bull. Chem. Soc. Jpn, 42, 3064-3072.

Acta Cryst. (1984). C40, 965-967

Structure of Chloro(diethyldithiocarbamato)(triphenylphosphine)nickel(II), $\left[\mathrm{NiCl}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\left\{\mathbf{P P}_{6} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$

By K. Ramalingam and G. Aravamudan
Department of Chemistry, Indian Institute of Technology, Madras-600 036, India
and M. Seshasayee and Ch. Subramanyam
Department of Physics, Indian Institute of Technology, Madras-600 036, India

(Received 4 November 1983; accepted 13 February 1984)

Abstract. $M_{r}=504.69$, triclinic, $P \overline{1}, \quad a=9.808(2)$,
$b=11.690(2), \quad c=14.026(2) \AA, \quad \alpha=97.63(1), \quad \beta$
$=118.35(1), \quad \gamma=108.81(1)^{\circ}, \quad V=1258.4 \AA^{3}, \quad Z=$
$2, \quad D_{x}=1.33 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$
$0108-2701 / 84 / 060965-03 \$ 01.50$
$1.049 \mathrm{~mm}^{-1}, \quad T=300 \mathrm{~K}, \quad F(000)=524$, final $R=$ 0.052 for 1773 reflections. Ni^{11} displays planar fourfold coordination with the following parameters: $\mathrm{Ni}-\mathrm{S}($ trans to Cl$)=2 \cdot 170(4), \mathrm{Ni}-\mathrm{S}($ trans to P$)$ © 1984 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of anisotropic thermal parameters, coordinates of the H atoms, hydrogen-bond parameters, least-squares planes, counter-ion positions and observed and calculated structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39270 (18 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU. England.

